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Abstract

We present a new, rather elementary, proof of the irrationality
of ζ(3) based on some recent ‘hypergeometric’ ideas of Yu. Nesterenko,
T. Rivoal, and K. Ball, as well as on the Gosper–Zeilberger algorithm
of creative telescoping.

1 Introduction

A question of arithmetic nature of the values of Riemann’s zeta function

ζ(s) :=
∞∑

n=1

1

ns

at odd integral points s = 3, 5, 7, . . . looks like a challenge for number the-
orists. An expected answer ‘each odd zeta value is transcendental ’ is still
far from being resolved. We only dispose of a particular information on the
irrationality of odd zeta values, namely:

• ζ(3) is irrational (R. Apéry [1], 1978);

• infinitely many of the numbers ζ(3), ζ(5), ζ(7), . . . are irrational
(T. Rivoal [11], 2000);

• at least one of the four numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational (this
author [16], [20], 2001);

• each set ζ(s + 2), ζ(s + 4), . . . , ζ(8s − 3), ζ(8s − 1) with odd s > 1
contains at least one irrational number (this author [17], 2002).
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All these results have a classical hypergeometric origin, and we refer the
reader roused the curiosity of this terminology to the works [6], [13], [14],
[18], [20] for details. The aim of this note is to prove Apéry’s famous result
by ‘elementary means’.

Theorem (Apéry [1]). The number ζ(3) is irrational.

The idea of the following proof is due to T. Rivoal [12], [13], who combines
approaches of L. Gutnik [5] and Yu. Nesterenko [7], and of K. Ball; our
contribution here is to make a use of the Gosper–Zeilberger algorithm of
creative telescoping in the most elementary manner.

2 Gutnik’s series

In what follows, we denote by Dn the least common multiple of the numbers
1, 2, . . . , n (and take D0 = 1 for completeness). The prime number theorem
(whose proof, by the way, depends on the behavior of ζ(s) in a neighborhood

of s = 1) implies D
1/n
n → e as n → ∞.

Our starting point is repetition of [7, Section 1] (which in turn originates
from the construction in [5]). For each integer n = 0, 1, 2, . . . , define the
rational function

Rn(t) :=

(
(t − 1) · · · (t − n)

t(t + 1) · · · (t + n)

)2

.

Lemma 1 (cf. [7, Lemma 1]). The equality

rn := −
∞∑

t=1

R′

n(t) = unζ(3) − vn (1)

holds, where un ∈ Z and D3
nvn ∈ Z.

Proof. Taking square of the partial-fraction decomposition

(t − 1) · · · (t − n)

t(t + 1) · · · (t + n)
=

n∑

k=0

(−1)n−k
(

n+k
n

)(
n
k

)

t + k

with a help of the relation

1

t + k
· 1

t + l
=

1

l − k
·
(

1

t + k
− 1

t + l

)
for k 6= l,
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we arrive at the formula

Rn(t) =
n∑

k=0

(
A

(n)
2k

(t + k)2
+

A
(n)
1k

t + k

)
,

with Ajk = A
(n)
jk satisfying the inclusions

A2k =

(
n + k

n

)2(
n

k

)2

∈ Z and DnA1k ∈ Z, k = 0, 1, . . . , n. (2)

Furthermore,

n∑

k=0

A1k =
n∑

k=0

Rest=−kRn(t) = −Rest=∞Rn(t) = 0

since Rn(t) = O(t−2) as t → ∞; hence the quantity

rn =
∞∑

t=1

n∑

k=0

(
2A2k

(t + k)3
+

A1k

(t + k)2

)
=

n∑

k=0

∞∑

l=k+1

(
2A2k

l3
+

A1k

l2

)

= 2
n∑

k=0

A2k

( ∞∑

l=1

−
k∑

l=1

)
1

l3
+

n∑

k=0

A1k

( ∞∑

l=1

−
k∑

l=1

)
1

l2

has the desired form (1), with

un = 2
n∑

k=0

A2k and vn = 2
n∑

k=0

A2k

k∑

l=1

1

l3
+

n∑

k=0

A1k

k∑

l=1

1

l2
. (3)

Finally, using the inclusions (2) and

Dj
n ·

k∑

l=1

1

lj
∈ Z for k = 0, 1, . . . , n, j = 2, 3,

we deduce that un ∈ Z and D3
nvn ∈ Z as required.

Since

R0(t) =
1

t2
and R1(t) =

1

t2
+

4

(t + 1)2
− 4

t
+

4

t + 1
,

in accordance with formulae (3) we find that

r0 = 2ζ(3) and r1 = 10ζ(3) − 12. (4)
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3 Creative telescoping

Now, with a help of the Gosper–Zeilberger algorithm of creative telescoping
[8, Chapter 6] we get the rational function Sn(t) := sn(t)Rn(t), where

sn(t) := 4(2n + 1)(−2t2 + t + (2n + 1)2), (5)

satisfying the following property.

Lemma 2. For each n = 1, 2, . . . , the following identity is true:

(n+1)3Rn+1(t)−(2n+1)(17n2+17n+5)Rn(t)+n3Rn−1(t) = Sn(t+1)−Sn(t).
(6)

‘One-line’ proof. Divide both sides of (6) by Rn(t) and verify numeri-
cally the resulted identity

(n + 1)3

(
t − n − 1

t + n + 1

)2

− (2n + 1)(17n2 + 17n + 5) + n3

(
t + n

t − n

)2

= sn(t + 1)

(
t2

(t − n)(t + n + 1)

)2

− sn(t),

where sn(t) is given in (5).

Lemma 3. The quantity (1) satisfies the difference equation

(n + 1)3rn+1 − (2n + 1)(17n2 + 17n + 5)rn + n3rn = 0 (7)

for n = 1, 2, . . . .

Proof. Since R′

n(t) = O(t−3) and S ′

n(t) = O(t−2), differentiating iden-
tity (6) and summing the result over t = 1, 2, . . . we arrive at the equality

(n + 1)3rn+1 − (2n + 1)(17n2 + 17n + 5)rn + n3rn−1 = S ′

n(1),

because the sum on the right-hand side telescopes. It remains to note that, for
n ≥ 1, both functions Rn(t) and Sn(t) = sn(t)Rn(t) have zero of multiplicity 2
at t = 1. Thus S ′

n(1) = 0 for n = 1, 2, . . . and we obtain the desired
recurrence (7) for the quantity (1).
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4 Ball’s series

Consider another rational function

R̃n(t) := n!2(2t + n)
(t − 1) · · · (t − n) · (t + n + 1) · · · (t + 2n)

(t(t + 1) · · · (t + n))4
(8)

and the corresponding hypergeometric series

r̃n :=
∞∑

t=1

R̃n(t) (9)

proposed by K. Ball.

Lemma 4 (cf. [3, the second proof of Lemma 3]). For each n = 0, 1, 2, . . . ,
we have the inequality

0 < r̃n < 20(n + 1)4(
√

2 − 1)4n. (10)

Proof. Since R̃n(t) = 0 for t = 1, 2, . . . , n and R̃n(t) > 0 for t > n, we
deduce that r̃n > 0.

With a help of elementary inequality

1

m
· (m + 1)m

mm−1
=

(
1 +

1

m

)m

< e <

(
1 +

1

m

)m+1

=
1

m
· (m + 1)m+1

mm

implying (m + 1)m/mm−1 < em < (m + 1)m+1/mm for m = 1, 2, . . . , we
deduce that

e−n (m + n)m+n−1

mm−1
< m(m + 1) . . . (m + n − 1) < e−n (m + n)m+n

mm
.

Therefore, for integers t ≥ n + 1,

R̃n(t) · (t + n)5

(2t + n)(t + 2n)
= n!2 · (t − 1) · · · (t − n) · (t + n) · · · (t + 2n − 1)

(t(t + 1) · · · (t + n − 1))4

< (n + 1)2(n+1) · t5t−4(t + 2n)t+2n

(t − n)t−n(t + n)5(t+n)−4
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and, as a consequence,

R̃n(t) · t4(t + n)

(2t + n)(t + 2n)(n + 1)2
< (n + 1)2n · t5t(t + 2n)t+2n

(t − n)t−n(t + n)5(t+n)

=

(
1 +

1

n

)2n

· enf(t/n) < e2 ·
(

sup
τ>1

ef(τ)

)n

,

(11)

where

f(τ) := log
τ 5τ (τ + 2)τ+2

(τ − 1)τ−1(τ + 1)5(τ+1)
.

The unique (real) solution τ0 of the equation

f ′(τ) = log
τ 5(τ + 2)

(τ − 1)(τ + 1)5
= 0

in the region τ > 1 is the zero of the polynomial

τ 5(τ + 2) − (τ − 1)(τ + 1)5 = −
(

τ +
1

2

)(
2

(
τ +

1

2

)4

− 5

(
τ +

1

2

)2

− 7

8

)
;

it can be determined explicitly:

τ0 = −1

2
+

√
5

4
+
√

2.

Thus,

sup
τ>1

f(τ) = f(τ0)

= f(τ0) − τ0f
′(τ0) = 2 log(τ0 + 2) + log(τ0 − 1) − 5 log(τ0 + 1)

= 4 log(
√

2 − 1)

and we continue the estimate (11) as follows:

R̃n(t) · t4(t + n)

(2t + n)(t + 2n)
< e2(n + 1)2(

√
2 − 1)4n, (12)
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Finally, we apply the inequality (12) to deduce the required estimate (10):

r̃n =
∞∑

t=n+1

R̃n(t) < e2(n + 1)2(
√

2 − 1)4n

∞∑

t=n+1

(2t + n)(t + 2n)

t4(t + n)

< e2(n + 1)2(
√

2 − 1)4n

∞∑

t=n+1

(
2

t5
+

5n

t4
+

2n2

t3

)

≤ e2(n + 1)2
(
2ζ(5) + 5nζ(4) + 2n2ζ(3)

)
(
√

2 − 1)4n

< 20(n + 1)4(
√

2 − 1)4n.

5 Coincidence of Gutnik’s and Ball’s series

Applying the algorithm of creative telescoping, this time with data (8), we
obtain the certificate

S̃n(t) :=
R̃n(t)

(2t + n)(t + 2n − 1)(t + 2n)
·
(
−t6 − (8n − 1)t5 + (4n2 + 27n + 5)t4

+ 2n(67n2 + 71n + 15)t3 + (358n4 + 339n3 + 76n2 − 7n − 3)t2

+ (384n5 + 396n4 + 97n3 − 29n2 − 17n − 2)t

+ n(153n5 + 183n4 + 50n3 − 30n2 − 22n − 4)
)
. (13)

Lemma 5. For each n = 1, 2, . . . , the identity

(n+1)3R̃n+1(t)−(2n+1)(17n2+17n+5)R̃n(t)+n3R̃n−1(t) = S̃n(t+1)−S̃n(t)
(14)

holds.

‘One-line’ proof. Divide both sides of (14) by R̃n(t) and verify the
resulted identity.

Lemma 6. The quantity (9) satisfies the difference equation (7) for n =
1, 2, . . . .

Proof. Since R̃n(t) = O(t−5) and S̃n(t) = O(t−2) as t → ∞ for n ≥ 1,
summation of equalities (14) over t = 1, 2, . . . yields the relation

(n + 1)3r̃n+1 − (2n + 1)(17n2 + 17n + 5)r̃n + n3r̃n−1 = −S̃n(1).

It remains to note that, for n ≥ 1, both functions (8) and (13) have zero

at t = 1. Thus S̃n(1) = 0 for n = 1, 2, . . . and we obtain the desired
recurrence (7) for the quantity (9).
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Lemma 7. For each n = 0, 1, 2, . . . , the quantities (1) and (9) coincide.

Proof. Since both rn and r̃n satisfy the same second-order difference
equation (7), we have to verify that r0 = r̃0 and r1 = r̃1. Direct calculations
show that

R̃0(t) =
2

t3
, R̃1(t) = − 2

t4
+

2

(t + 1)4
+

5

t3
+

5

(t + 1)3
− 5

t2
+

5

(t + 1)2
,

hence r̃0 = 2ζ(3) and r̃1 = 10ζ(3)−12, and comparison of this result with (4)
yields the desired coincidence.

6 Proof of Apéry’s theorem

Suppose, on the contrary, that ζ(3) = p/q, where p and q are positive integers.
Then, using the ‘trivial’ bound Dn < 3n valid for n ≥ n0, we deduce that, for
each index n ≥ n0, the integer qD3

nrn = D3
nunp−D3

nvnq satisfies the estimate

0 < qD3
nrn < 20q(n + 1)433n(

√
2 − 1)4n; (15)

this is not possible since 33(
√

2 − 1)4 = 0.7948 . . . < 1 and the right-hand
side of (15) is less than 1 for n sufficiently large which is a contradiction.

7 Concluding remarks

In spite of its elementary argument, our proof of Apéry’s theorem does not
look much simpler than the original (also elementary) Apéry’s proof well-
explained in A. van der Poorten’s informal report [9], or (almost elementary)
Beukers’s proof [4] using Legendre polynomials and multiple integrals. In
fact, Poincaré’s theorem on asymptotic behavior of solutions of difference
equations allows one to avoid using Ball’s series (9) and the analysis in Sec-
tions 4 and 5: Dividing both sides of (7) by n3 we see that the solutions
of (7) are, in a certain sense, ‘close’ to the solutions of

rn+1 − 34rn + rn = 0, n = 0, 1, 2, . . . ,

which are rn = c1λ
n
1 + c2λ

n
2 with λ1 = (

√
2 − 1)4, λ2 = (

√
2 + 1)4 and c1, c2

arbitrary (complex) constants. This ‘closeness’ is the subject of Poincaré’s
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theorem, which states that for any non-trivial solution rn (and we are in this
case, since r0 and r1 are non-zero according to (4)) of (7),

lim
n→∞

|rn|1/n ∈ {λ1, λ2}.

Already naive estimating the terms in (1) gives a bound of the form |rn| < Cn
with C > 0 a constant, hence only |rn|1/n → λ1 = (

√
2−1)4 remains possible.

With this asymptotic estimate one easily concludes with the irrationality of
ζ(3) as we do in Section 6.

The fact that r̃n = ũnζ(3)− ṽn with Dnũn, D4
nṽn ∈ Z was first discovered

by K. Ball; the proof follows lines of the proof of Lemma 1 and the vanishing
of the coefficients of ζ(4) and ζ(2) is due to the well-poised origin of the hyper-
geometric series (9). Recently, C. Krattenthaler and T. Rivoal [6, Section 16]
showed the coincidence of Gutnik’s and Ball’s series without use of the dif-
ference equation (7) but applying directly certain hypergeometric transfor-
mations to the coefficients un and vn of the linear forms (1). This proof
resembles a classical (unfortunately, less elementary) recipe: Lemma 7 can
be proved by specialisation of Bailey’s identity [2, Section 6.3, formula (2)]

7F6

(
a, 1 + 1

2
a, b, c, d, e, f

1
2
a, 1 + a − b, 1 + a − c, 1 + a − d, 1 + a − e, 1 + a − f

∣∣∣∣ 1

)

=
Γ(1 + a − b) Γ(1 + a − c) Γ(1 + a − d) Γ(1 + a − e) Γ(1 + a − f)

Γ(1 + a) Γ(b) Γ(c) Γ(d) Γ(1 + a − b − c) Γ(1 + a − b − d)
×Γ(1 + a − c − d) Γ(1 + a − e − f)

× 1

2πi

∫ i∞

−i∞

Γ(b + t) Γ(c + t) Γ(d + t) Γ(1 + a − e − f + t)
×Γ(1 + a − b − c − d − t) Γ(−t)

Γ(1 + a − e + t) Γ(1 + a − f + t)
dt,

(16)

provided that the very-well-poised hypergeometric series on the left-hand
side converges. Namely, taking a = 3n + 2 and b = c = d = e = f = n + 1
in (16) we obtain Ball’s sequence (9) on the left and Apéry’s sequence (1) on
the right (for the last fact see [7, Lemma 2]). The general identity (16) can
be put forward for explaining on how the permutation group from [10] for
linear forms in 1 and ζ(3) appears (see [20, Sections 4 and 5] for details). On
the other hand, the hypergeometric machinery developed in [6] could lead to
further novelties on the arithmetic nature of odd zeta values.

We would like to point out that our way of deducing the recursion (7)
for the sequence rn easily extends to showing that the coefficients un and vn
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satisfy (7) as well. Indeed, if we multiply both sides of (6) by (t + k)2, sub-
stitute t = −k and sum over all integers k, then we arrive at the difference
equation (7) for the sequence un; as for the sequence vn, it follows from the
equality vn = unζ(3) − rn. This approach slightly differs from those used
in [9, Section 8] and [15, Section 13] although it is based on the same algo-
rithm of creative telescoping. This algorithm and the above scheme allow
us [18], [19] to obtain Apéry-like difference equations for ζ(4) and Catalan’s
constant G =

∑
∞

n=0(−1)n(2n + 1)−2.

Acknowledgement. The work was supported by the Hausdorff Center
for Mathematics (Bonn).
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Théor. Nombres Bordeaux, 16:1 (2004), 251–291.


